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Abstract. Spontaneous emission of fluorescence radiation by an atom near the surface of a four-

wave mixing phase conjugator is considered. It is shown that the spectral photon distribution

consists of two Lorentzians, which have their peaks symmetrically located at the two sides of the

pump frequency o of the nonlinear crystal. With co. the atomic resonance, the line at 2a0-(o is

more than twice as strong as the line at co. When the phase-conjugate reflectivity exceeds unity,

the temporal photon distribution exhibits nonclassical behavior. Then, antibunching of photons

prevails, and the photon statistics is sub-poissonian.
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1. Introduction

When two strong counterpropagatng laser beams with frequency co pump a nonlinear

crystal, then this device operates as a phase conjugator (PC) for weak incident radiation on its

surface, due to a four-wave mixing process in the medium. In particular, the electromagnetic

vacuum field interacts with the pump beams, and this results in a spontaneous emission of

photons with frequency o in all directions [1]. When a two-state atom with level separation hwo0

is located in the vicinity of the surface of the PC, it can absorb these photons. This leads to

spontaneous excitation of the atom [2,3] through a three-photon process, as illustrated in Fig. I.

An atom in its ground state I g> absorbs a photon with frequency a), and subsequently emits

spontaneously a photon with frequency 2(o-o).. The energy-conserving diagram is completed by

a second absorption of a photon with frequency o, which leaves the atom in the excited state

e>. This process is reminiscent of the generation of the three-photon line in resonance

fluorescence by an atom in a laser field with frequency co [4]. After this excitation, the atom

decays spontaneously in the usual way, which produces a photon with frequency co. Continuous

repetition of this cycle should lead to a steady emission of photons with frequencies Co and

2w-coo,.

The above interpretation of spontaneous emission by an atom near a PC is simply based

on energy conservation. We shall show that the fluorescence spectrum consists indeed of two

lines, which are positioned at Coo and 2co-coo. Furthermore, we shall evaluate the two-photon

correlation function. The antibunching between two co,,-photons and between two 2co- o,,-photons

then reveals the alternating character of the two emission mechanisms from Fig. .
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2. Fluorescence

The surface of the PC is taken as the xy-plane, and the atom with dipole moment g(t)

is located on the positive z-axis at z = h. The positive-frequency part of the fluorescence

radiation field is given by [5]

2 e -"
4 {M(t) -= (.-M'M()} , (1)4re orc 2

in the far zone. Here,

r = (h/c)cosO , (2)

and the operator M(t) is defined as

M(t) = V(t)(+)  p'e-2JL(0t-) (3)

in terms of the positive- and negative-frequency parts of the dipole operator, and the Fresnel

reflection coefficient P for a plane wave with frequency (o0 . We have suppressed the retardation

with -r/c. Equation (1) was derived by solving the Maxwell-Heisenberg equations for a dipole

near the surface of a PC. The term proportional to p () (*) is dipole radiation by ai atom in

empty space. This radiation reflects at the surface, with reflection coefficiet P, and this

produces the second term. Due to the phase conjugation, p( ' ) is reflected as , and the

factor exp(-2i6) accounts for the two Co photons in Fig. L.b.

We shall assume that the radiation passes a polarizer, which transmits the

.d -component of the field (with ed'ed = 1). This component is
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2e-S= EQt)'e0 = ) T4
47reorc

2

where we used e . = 0. A photomultiplier then counts photons from this filtered field.

With e= I ig>, assumed to be real, the field becomes

= e (".'e'd) {dt(t) - P'e-2-d ,(5)047rerc2

in terms of the atomic raising operator d = e.

3. Equation of motion

The atomic density operator p(t) obeys the Liouville equation

i -= (L,-np , p= p , Trp = 1 (6)

where L, and F represent the free evolution and relaxation, respectively. With the atomic

Hamiltonian given by

Ha = hcP 1 + hwagPg (7)

in terms of the projectors P. = i e><e I and P9 = g><g I onto the excited state and ground state,

respectively, the Liouvillian L, becomes

L~a = .h-'1Ho0 ' :] = LP,,oi (8)

Here we used P, + Pg = I and ( =  o, - (o. Equation (8) defines the action of L, on an arbitrary

Hilbert-space operator ;. rather than on the density operator p only. The relaxation operator is [6
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ra = !A {Pa + aP, -2dta}
2 -- ( 9 )

+ 2AR{Psa + oPS -2dad&}
2'

in terms of the relaxation constants for the excited state and ground state

A, = A(I + 1IPI2 (10)
2

Ag = IAIPI2 (1l)
2

respectively. The parameter A is the Einstein coefficient for spontaneous decay in empty space.

Of particular interest is the steady-state density operator p = p(t-.oo), which is the

solution of

(L-i) =0 , P, Tr' = 1 (12)

We readily find

= , + ',pg , (13)

in terms of the steady-state level populations

n, 2 W n (14)

1 + I2  -

The finite population of the excited state is due to the occurrence of the three-photon process

from Fig. 1. The transient solution p(t), given an initial state p(O), can also be found easily.
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. Fluorescence spectrum

The stationary spectral distribution of photons i a field Xt) is in general given by

J((j) -Ref dr ,(15)

Where w is me photon frequency and C is an efficiency constant (depending on the aperture of

:he detector. etc.). The spectrally-unresolved intensity is

I = (dw J(w) = C < 9(O)(-)g(0).*)>  (16)

which equals the photon counting rate.

With Eq. (5), the field correlation function in Eq. (15) acquires four contributions,

C < iple- w"<dt(O)d(r)>

- P e (a'<d(O)d(-r)> -P<d(O)dt(-r)> . 17)

where we introduced the parameter

= 1 o , . 12 (18)

4ite rcZ

The atomic correlation functions in Eq. (17) can be found by transforming first to the
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Schr6dinger picture. This yields

<d(0)dl( )> = Trdte_-'-r ( d) (19)

and similar expressions hold for the other three correlation functions. With the explicit forms

of L,, F and p from Sec. 3, we obtain

<d=O)d(-)> <dt(O)dt(T)> = 0 (20)

-=-e.(21)<d(O)dt(T)> n. e, 2

,ae r - , A,), (22)<dT(0)d(-,)> n - e 2

for t _ 0. Apparently, the last two terms on the right-hand side of Eq. (17) vanish.

Combining everything gives for the fluorescence spectrum

I, I
,/(c))=- ReI

1(A +A)- i(Ca- W)
- e+g -zt 23)

I_ / 1

1 1R2 2(A, +AP - i(+w-2W)

where

I. = ne ,n I, 'ip12  (24)

The spectrum J(0o) is a sum of two Lorentzians, both with a half-width at half-minimum equal

to I(A#+A) = -A(lI P 2). Similar results were found by Milonri et al [7] and Gaeta and



Boyd [8]. The values of I P I are in the range 0 < I P I < cc. Therefore, the minimum value of

the linewidth is -A , and this width grows indefinitely with increasing (intensity) reflection
2

p 2. The first spectral line on the right-hand side of Eq. (23) has a strength equal to I, and is

located at 0 = (o,. This line is due to the decay process in diagram (a) from Fig. 1. Notice that

I, is proportional to i,, as it should be because the inital state is i e>. Similarly, the second line

has a strength I, and is positioned at co = 2o)--.o. The responsible process is the three-photon

process from diagram (b) in Fig. 1. The line strengths as a function of I P 2 are shown in Fig.

2. Obviously, both L and I, vanish for ! P 12 __ 0. For large reflectivity they behave as

-gpIz , (25)

and it always holds that

1g z21,, (26)

as follows from

IgI, = 2 - P 2 
. (27)

When we designate photons in the I and I lines as "e-photons" and "g-photons", respectively,

then Eq. (26) expresses that there are more than twice as much g-photons than there are e-

photons. This can be understood as follows. An e-photon is emitted during ordinary spontaneous

decay, and it propagates either in the positive or negative z-direction. Since the detector is

located in the region z > 0, half the number of e-photons can never reach the detector. They

travel towards the surface of the PC, and are subsequently annihilated in a four-wave mixing
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process inside the medium. The g-photons, on the other hand, always propagate in the positive

z-direction. This explains the inequality (26), and the factor of 2. The reason why Ie has an

upper limit lies in the fact that the process is ordinary spontaneous decay. When the atom is in

I e> at a certain time, it takes a time 1/A to decay and to emit the e-photon. Then the atom has

to be excited again during a g-photon emission before it can emit a subsequent e-photon. This

limits the emission rate to /2A (for the positive z-direction), and the detection rate to /24. The

three-photon process, however, is brought about by stimulated transitions, and its repetition rate

can be enhanced unlimitedly by increasing the strength of the "external field" ((o-photons).

The spectrally unresolved emission rate is found to be

I= 1, = ItIpI2 3 + P12  (28)
S1+ 'p 2

and its dependence on I p 2 is illustrated in Fig. 3.

6. Photon correlations

The temporal characteristics of the fluorescence photons are most conveniently expressed

in terms of the two-photon correlation function I2(t,,t 2). By definition, 12(t,,t2)dtldt2 equals the

probability for the detection of a photon in [t1 ,t, + dt1 ], together with the detection of a photon

in [t2,t 2 + dt2], hut independent of detections at other times. The photon correlation function can

be expressed in terms of the incident field on the photomultiplier, according to [9,101

12(tl,t 2) = ( 2<,(tt)(-),(t 2)(-) (t2 )+)g(t)(+)> (29)

for t2 > t,. When the atom is in the steady state p, then 12(tl,t 2) depends only on t1 and t2 through

t2 - t,, as can be checked by inspection. Therefore, we shall only consider L2(0,,t), with T 2! 0.
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With expression (5) for igt) + , we can work out the right-hand side of Ea. (29) and

express L(0,t) in terms of atomic correlation functions. Due to the special form of p, many of

these correlation functions turn out to be zero (as in Eq. (20)). It appears that L(Oj) consists of

four terms and can be written as

I2(0,') = E fp (1. , (30)

where the summation runs over cc = e,g and 13 = e,g. The intensities I and Ig are again the

intensities of the e-line and the g-line, respectively, and the functions fp(t) are defined as

E' 2 TrRP R. P (31)

with L = L. - if. The Liouville operators R, and R, are

Rao = dtod = Pg <eolae> (32)

Rgao !pltdodt = Pl 2P,<g og> , (33)

for an arbitrary a. From Eq. (30) and the definition of I(0,j), it follows that f ,(t)Ia equals the

probability for the detection of a -photon at time t = r and an a-photon at time t = 0.

Therefore, f (t)d has the significance of the probability for the detection of a P3-photon at time

: after the detection of an a-photon at time zero. With the properties

lim e ,a = pTr a , 34)
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which can be verified easily, we find from Eq. (31)

lira f1(0O = (36)

This relation expresses that for a long delay time -r, the detection of the P-photon becomes

-ndependent of the detection of the a-photon. Combination of Eqs. (30) and (36) gives

L(0,oo) = = II- 12 (37)

where I = 1, + 19 is the uncorrelated intensity.

The opera~or R can be viewed as the emission operator for an a-photon. Equation (35)

expresses that the detection rate I for a-photons equals 4 times the expectation value of the

operator R,. The parameter 4 relates the emission rate to the detection rate. This picture is also

upported by Eq. (31). Reading from right to left, the atom is initially in state p. The action of

,? then corresponds to the emission of the a-photon. Subsequently, the atomic state evolves over

a time - with exp (-iL't), after which the action of Ro causes the emission of the P3-photon. The

factor 2 relates the two emission rates to detection rates. Finally, Eqs. (32) and (33) show

explicitly the effect of the action of an emission operator on an atomic density operator. Actic..

Of R, on (Y leaves the atom in the ground state, as represented by the projector Pg on g>, and

-enerates the factor <e ! Y a e> which is the population of the excited state. This is precisely what

happens in diagram (a) of Fig. 1. The probability for the emission of an e-photon is proportional
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to the population of I e>, since the atom must be initially in the excited state, and after the

emission the atom is in the ground state. Similarly, the action of R9 leaves the atom in I e>, and

the probability for the emission of a g-photon is proportional to <g I a I g>, as expressed by Eq.

(33). This interpretation is consistent with the processes in diagram (b) of Fig. 1.

Of particular interest is the behavior of fp(x) for small values of T. When fk(O) > I, then

the emission of the a-photon enhances the probability for the emission of the subsequent [3-

photon, as compared to the uncorrelated probability for the emission of a P-photon. When

fo,(0) < I, then the a-emission reduces the probability for a 3-emission. With

R'_ = ' = 0(38)

as follows from Eqs. (32) and (33), we find

f"(O) = fg(o) = 0 (39)

The relation f,(0) = 0 expresses that the probability for the emission of an e-photon, immediately

following an e-emission, is zero. This should be so, because after the emission of the first e-

photon the atom is in its ground state, and subsequent emission of an e-photon requires that the

atom is in the excited state. This necessary I g> -- I e> transition is brought about by a three-

photon process, which takes a finite time. A similar explanation holds for fgg(O) = 0.

For the other two correlation functions, we find
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fq(O) = > 2 (40)

=- >_ 1 (41)

Is ng

showing that the emission of an e(g) photon always enhances the probability for the emission of

a g(e) photon. Also, this is easily understood. The probability for an e-emission is proportional

to the population of Ie>. For the uncorrelated emission, the atom is in the steady state p, and

the population k is smaller than unity (and, in fact, smaller than 1/2). After a g-emission,

however, the atom is in its excited state with certainty. This explains Eq. (40), and a similar

interpretation can be given to Eq. (41).

When we do not distinguish between e-photons and g-photons, then we have to consider

L(O). For T = 0 we obtain

12(0,0) 4(+x 2  x = IP 2  (42)
12(0,-*) x( 3+-x]

and the corresponding parameter-free curve is shown in Fig. 4. For 0 < I PI 2 < I we have

12(0,0) > I2(0,00), which means that the emission of the first photon enhances the probability for

the emission of a second photon. This behavior is called "bunching", indicating that photons tend

to stick together. Antibunching (I2(0,0) < 12(0,-0)) occurs for I p 2 > 1. The function 12(0,T) is

easily calculated, with the result
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1 + g(IP12) e (43)12

where

g(x) (-x) x2 + 3 + 4 (44)x(x+3)2

This correlation function is shown in Fig. 5 for three values of I P I

6. Photon statistics

Photon antibunching is a pure quantum feature of radiation, since it cannot be produced

by any classical field [11]. A related phenomenon is the possibility that quantum radiation has

sub-poissonian photon statistics. This means that the variance a(t)2 in the number of detected

photons in [O,t] is smaller than the average p(t), which never occurs for classical fields. Mandel

introduced the Q-factor [12]

Q(t) = 0(t)2 - pL(t), (45)
p1(t)

which is negative for sub-poissonian photon statistics. Negative values of Q(t) have been found

experimentally in resonance fluorescence [13,14]. For stationary radiation the average is J.(t)

It, with I the intensity. The variance can be expressed in I2(0,t), and the Q-factor is
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Qt) = 2fo dri{(t-r)1 2 (Oj) - Ct2 ) (46)

With Eq. (43) we find for the present problem

Q(t) = 21g(IPj 2){(A+A )t - I + e -  
A,)t

a ) (47)(A, +A 9) 2t

The sign of Q(t) is given by the sign of g( I P 2). Therefore, for I P 1 2 > 1 we have Q(t) < 1 for

all t, and the statistics is sub-poissonian. For small t we find

Q(t) = Itg(IPI2 ) , t- 0, (48)

showing that Q(t) increases or decreases linearly with t. For t -- co, Q(t) reaches the stationary

value

Q = limQ(t) - 21g(jP12) (49)
rt 00 A t + A

Recalling that I, A, and Ag depend on I P! ', we can then write for the 1 P! 2 dependence of Q

-Q_ 1-x x2 + 3x + 4 , x = IJ (50)
A (Il+x) 2  x + 3

The factor E/A is an efficiency factor. We see that Q = ( /A)(4/3) for P -- 0, Q = 0 for I P! 2

= 1, and Q -- -( /A) for ' P 2 -- oo In view of Eq. (45), the value of Q(t) is limited by Q(t)
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- I for any field. The lower limit Q(t) = -1 corresponds to a(t)2 = 0, which is the ultimate sub-

poissonian limit. By increasing the phase-conjugate reflectivity P I 2, this lower limit can be

approached arbitrarily closely, apart from the efficiency factor E/A. The dependence of QA/A

on I P I 2 is shown in Fig. 6.

7. Conclusions

We have studied the spectral and temporal properties of fluorescence radiation, which is

emitted by an atom near the surface of a PC. The fluorescence spectrum was found to be the

sum of two Lorentzians, and the positions of the lines appeared to be consistent with the two

relaxation processes shown in Fig. 1. Three-photon processes contribute more than twice as

much to the fluorescence yield as compared to ordinary spontaneous decay. From the result for

the two-photon correlation function 4 (0,T), it followed that the fluorescence photons exhibit

antibunching when the reflectivity of the PC exceeds unity. Under the same criterion, the photon

statistics is sub-poissonian.
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Figure Captions

Fig. 1. Diagram (a) corresponds to ordinary spontaneous decay and the emission of a photon

with frequency o. Diagram (b) represents a three-photon process. Two photons with frequency

63 are absorbed (double lines), and the atom gas goes from the ground state to the excited state.

Therefore, the fluorescent photon which is emitted in between the two absorptions must have a

frequency 20-ao.

Fig. 2. Curves e and g represent the strengths I and I of the e-line and the g-line, respectively,

as a function of the reflectivity I P 1 2. We have plotted the dimensionless quantities IJ and IA.

The dashed lines indicate the asymptotic values I P 1 2 __ .).

Fig. 3. Plot of the total intensity I (divided by 4) as a function of I P 1 2. The dashed line, at I/

= 1 P 2, is the asymptotic limit.

Fig. 4. Photon correlation function for r = 0, relative to its value for r = c-, as a function of

pt 2. For IP 2> 1 the value of 12(0,0) is smaller than 12(0,-0), which reflects antibunching of

photons.

Fig. 5. Curves a, b and c give 12(0,)/la as a function of (A, + A.),Tfor I P' 2 =0.5, IP 12 = and

I P 1 2 = 4, respectively. For I p 12 = I we have 12(0,-T) = 12 for all r, corresponding to perfectly

random (Poisson) detection statistics.

Fig. 6. Plot of the normalized Q-factor, QA/A, as a function of I P 12. For pI 2 = 1 we have Q

=0, which reflects uncorrelated photon statistics. The dashed line at QA/ = -1 is the asymptotic

limit.
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